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On the transition to turbulent convection. Part 2. 
The transition to time-dependent flow 

By RUBY KRISHNAMURTI 
Geophysical Fluid Dynamics Institute, Florida State University 

(Received 7 July 1969) 

The Rayleigh number at which steady convective flow changes to time-dependent 
flow is determined experimentally for several fluids with Prandtl numbers from 
1 to lo4. The time dependence is of two forms: (i) a slow tilting of the cell boundary, 
with time scale of the vertical thermal diffusion time, (ii) an oscillation with a 
faster time scale determined by the orbit time of the fluid around the cell. The 
nature of this oscillation is one of hot (or cold) spots advected with the original 
cellular motion. At a fixed point in the fluid this produces a time periodic oscilla- 
tion of the temperature. A discrete change of slope of the heat flux curve accom- 
panies this transition. As the Rayleigh number is increased, transition to disorder 
is seen to result from anincrease in the frequency and number of these oscillations. 

Introduction 
In  a horizontal convecting layer of fluid, a number of discrete transitions 

occur before the flow becomes fully turbulent (Malkus 1954a). The first is the 
well-known transition at  the critical Rayleigh number R, from the conduction 
state to a state of steady two-dimensional convection. A small non-linear 
neighbourhood of R, is reasonably well understood, but the Rayleigh number 
range between this and the turbulent state has received relatively little attention. 
Yet it is this intermediate range which would yield information on the mechanism 
of transition to turbulence. In  part 1 (Krishnamurti 1970) it  was found that the 
second transition, near 12R,, is one from steady two-dimensional to steady three- 
dimensional flow. This change in flow pattern is accompanied by a discrete change 
of slope of the heat flux curve. 

The purpose of this paper is to report on experimental studies of convection 
beyond the second transition. We shall be concerned with the onset and nature 
of the time dependence of convective flows. Reports in the literature of the 
occurrence of time-dependent convection vary by three orders of magnitude in 
the Rayleigh number. This was in part due to a dependence upon Prandtl 
number Pr, which was,pointed out by Rossby (1966) and explored by Willis & 
Deardorff (1967) for 0.71 < Pr < 57. However, even after accounting for the 
Prandtl number dependence, there is still considerable scatter and disagreement 
in the data. Externally steady, fixed heat flux experiments were conducted to 
observe plan form, transition to time dependence and nature of the time de- 
pendence, as well as the Rayleigh number R and heat flux H ,  for lo3 < R < lo6, 
and for Prandtl numbers in the range 1 t o  lo4. 



310 R. Krishnamurti 

Apparatus and procedure 
The convection tank and the auxilliary apparatus for the control and measure- 

ment of temperatures was as described in part 1. The convecting fluid occupied 
a region 51 cm by 49 ern with a variable depth of 2-5 cm. This fluid layer was 
bounded above and below by highly conducting metal boundaries, so that all 
flow visualization was from the side. The plan form, heat flux, and Rayleigh 
number, were determined in the manner described in part 1.  

For each steadily maintained external condition, the steadiness or non- 
steadiness of the resulting flow was to be determined. This was found to be too 
difficult by simply observing moving tracers through the fluid since there were 
gentle time dependencies with time scales of the order of several minutes to 
several hours. I n  order to have a record of the flow a t  an earlier time against which 
to compare the flow a t  a later time, the following photographic technique was 
devised. The apparatus used is shown schematically in figure 1. Two narrow 
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FIGURE 1. Apparatus for photographing the time evolution of flow. 

overlapping beams of light from 2-watt sources illuminate aluminium flake tracers 
along a line in the x-direction, say, through the fluid. The beam was 2 to 3 mm 
in diameter (about one-tenth the depth of the fluid), and remained fixed in 
space throughout the observation time. The camera also remained a t  a fixed 
distance from the beam. However, the camera was free to rotate about an axis 
through its lens. With the camera aperture open, a synchronous motor drew a 
wedge under the back of the camera a t  a rate determined by the time scale of 
the time dependence of the flow. Thus, the photograph displays an (x, t )  repre- 
sentation of the flow, where t is the time co-ordinate. At t = 0, the camera recorded 
alternating bright and dark regions, corresponding to the cellular structure, as 
a narrow strip of image across the film. When the flow was steady, the cell 
boundaries remained fixed in time, thus producing straight lines parallel to the 
t-axis on the photograph. With the beam near the top (or bottom) of the con- 
vecting layer, the tracer particles have an x-component of velocity which is 
given by the slope of the trajectories in the (x, t )  representation. I n  order to study 
the nature of the time dependence, (x, t )  photographs were obtained for the light 
beam at various horizontal positions, and at the following depths in the liquid: 
z = 0,  z = 0-25d, z = & 0.4~3, where d is the layer depth, x = 0 is the mid-level. 

To investigate further a time periodicity that was found in the (x,t) photo- 
graphs, a sequence of time lapse photographs of a vertical slice through the 
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fluid layer were obtained. To study the thermal structure associated with this 
periodic flow, a quincunical array of thermocouples was introduced into the 
fluid in the following manner. A cylindrical plug of 1 in. diameter and 1 in. height 
was made of the same aluminium alloy as the boundary material. Five holes were 
drilled through the plug parallel to the cylinder generators in order to accommo- 
date double-holed ceramic tubing. The holes of this tubing were just large enough 
to allow 30-gauge wires of copper and of constantan to be inserted. The holes as 
well as the thermocouple junctions were sealed by coating them with dissolved 
methyl methacrylate. The shortest distance between two thermocouple junctions 
was +gin. This plug with the thermocouples replaced another plug without 
thermocouples at the centre of the upper plate bounding the fluid layer. The 
plug was inserted to be flush with the upper plate and acted as part of the upper 
boundary. The five thermocouples, each 0.5 mm in diameter, extended 1.6 mm 
into the fluid. The plug was turned in such a way that three thermocouple 
junctions defined a line parallel to the x-direction (the direction of the light beam). 
Temperatures and temperature differences between points were measured as a 
function of the time and synchronized with the (x,t) photographs of the flow 
in the vicinity of the thermocouples. The most sensitive range of the amplifier 
was 0.3 pV full scale. 

The procedure for obtaining the data was as described in part 1. Externally 
steady, fixed heat flux conditions were maintained, then temperature measure- 
ments and photographs were obtained. Next, the heat flux was increased by a 
few percent and the procedure was repeated. Hysteresis effects were also studied 
in the manner described in part 1. 

Temperature differences across the fluid were kept as small as possible in an 
attempt to minimize non-Boussinesq effects. Temperature differences were a t  
most several centigrade degrees. Also, all experiments were performed by heating 
and cooling symmetrically about room temperature. 

A check was made in some cases to see if the aspect ratio affected the transition 
point to time dependence. The height to width ratio was varied from 0.02 to 
0-04, both of which are very small values. Larger changes could not be made since 
this would require either such small temperature differences that measurement 
and control were made too difficult, or such large temperature differences that 
non-Boussinesq effects would become significant. 

The entire procedure was repeated for seven fluids having Prandtl numbers 
0.71, 6-7, 57, 1.0 x lo2, 0.86 x lo3, 0-85 x lo4. The properties of these fluids are 
described in table 1 of part 1. 

Experimental results 
A typical plot of heat flux versus Rayleigh number is shown in figure 2. The 

heat flux has been scaled so that it is the product of Nusselt and Rayleigh 
numbers. The data is very well represented by straight line segments of different 
slopes. In order of increasing R,  the first transition occurs a t  the critical Rayleigh 
number R,, the second occurs around 12R,. The third and fourth changes of 
slope, seen in figure 2, occur at Rayleigh numbers designated R,,, and RIv. 
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The value of R,,, was found to be dependent upon Prandtl number. They are 
listed in table 1 for the cases in which R,,, was approached from below. For the 
fluid of Prandtl number 2 x 102 only the change of flow was recorded. Columns 3 
4, and 5 of table 1 summarize the heat flux data. As in part 1 the difference in 
magnitude of change of slope is not explained. It can only be suggested that the 

0 2 4 6 8 10 12 14 16 18 20 22 2 4 ,  

Rayleigh number x 

FIGURE 2. Heat flux vs. Rayleigh number, showing the third and fourth transitions. Heat 
flux curve, Pr = 1.0 x lo2. The heat flux has been non-dimensionalized so t,hat it is the 
product of Nusselt and Rayleigh numbers. 

difference may depend upon past history since metastable states appear to be 
involved. Figure 3 shows the hysteresis in heat flux when R is increased, then 
decreased, through a sequence of externally steady states. The fourth change of 
slope was determined only for Prandtl number 1.0 x lo2, 0.71 and 6-7. 

We next describe the results of the photographic studies of the flow. Although 
the plan form photographs are not synoptic pictures of the flow (since the time 
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required to produce such a photograph is comparable to the scale of the time 
dependence), they show that the flow is completely three-dimensional, much 
like figure 7 of part 1. 

In  searching for the Rayleigh number Rt at which the Aow becomes time de- 
pendent, the following was noted. Of course externally steady conditions were 
attained before the steadiness of the flow was tested. This, in itself, required 
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several vertical thermal diffusion times ( d 2 / ~ ) .  It was found that if the (x,t) 
photographs showed steady flows for at least one diffusion time, which was one 
hour in a particular case, then the flow was steady 10 or 20 h later also. Thus, in 
general, photographs were obtained for a duration of one diffusion time (one to 
seven hours in these experiments) to determine steadiness or non-steadiness of 
the flow. 

A typical (5, t )  photograph of steady flow is shown in figure 4 ( b )  (plate 2). The 
lowest value of Rayleigh number, approached from below, for which the photo- 
graphs show a time dependence was labelled R,, and is shown in table 1 for 
comparison with R,,,. In the case of air, Prandtl number 0.71, the labelling and 
association of the transitions become uncertain since the flow was not visualized. 

I I I I I I I I 
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Internal thermocouple traces show the flow to become time dependent around 
2.8Rc. The heat flux transition closest to this value is the second at 2-3Rc. 

The (2, t )  photographs show the nature of the time dependence to be bimodal. 
One mode is a slow tilt of the cell boundary with a time scale d 2 / K  for the layer. 
The result of this tilting is seen in figure 4 ( a )  (plate l) ,  for example. The other is 
an oscillatory mode seen, for example, in figure 4(f)  (plate 3). Of the several 
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hundred points on the (R, Pr) plane tha t  were studied, both modes were always 
present above R,,,, never present below. The oscillatory mode has the following 
characteristics: 

(i) With the light beam near the  top or bottom boundary a bright region of 
strong shear (or ‘knot’) can be identified which moves laterally from one cell 
boundary to  the other, and this phenomenon is repeated periodically with time. 
An example is seen in figure 4 (f) (plate 3). The knot is described as being advected 
with the flow, having approximately the same trajectory as the flow in cells 
without knots. There are, however, changes in curvature along its trajectory 
representing accelerations or decelerations. This is seen in figure 4 (h)  (plate 4) in 
an expanded view of a few cells. Similar photographs are obtained near either 
the top or bottom boundary; at mid-level the knot is detectable but there is no 
cross-cell motion. This is seen in figures 4(c) and (d)  (plate 2 ) ,  where in 4(d) 
the beam was at mid-level, z = 0, while in 4(c) the beam was at  x = 0.4d. All 
other parameters are equal. In  view of the three-dimensional nature of the plan 
form it is clear that the light beam at z = t 0.4d will intersect regions in which the 
flow has no z-component but is entirely along the line of sight. Knots on such a 
flow appear periodically as a bright spot but do not display lateral motions. 

Close-up photographs of a vertical slice through a few cells are arranged in a 
time-lapse sequence in figure 5 (plate 4). Each of the pictures is a 6 see exposure 
taken a t  15sec intervals. The arrows indicate the progress of a bright region 
around a cell. It is an oscillation in the sense that an observer at  a fixed point in 
the fluid will detect a time period behaviour of the flow. The period is related to 
the flow rate which increases with Rayleigh number. At these Rayleigh numbers 
the period is much shorter than d 2 / K  for the layer. The observed period is plotted 
against R in figure 8. 

The bright regions in the ( x , t )  photographs are interpreted as regions of 
strong shear rather than concentration of tracer. They could be seen as soon as 
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the flow was established after thorough stirring as well as after long periods of 
convection. 

(ii) We now describe the statistical behaviour of knots in a collection of cells. 
Just above R,,, perhaps only one cell of all the cells in the line across the tank 
displays oscillation during one thermal diffusion time. As R is increased, more 
and more cells display this oscillation at any instant. This is seen in the sequence 

FIGURE 6. The teinperaturc difference between two thermocouple junctions within the 
convecting fluid as it varies with time. The thermocouples are 0.79 ern apart and extend 
1.6 mm into the fluid from the top boundary R = 47R,, Pr = 0.85 x 104. 

of figures 4(c) (plate Z), ( e ) ,  (f), and (9 )  (plate 3) for Prandtl number 57. The 
oscillation in any particular cell disappears after approximately one thermal 
diffusion time, and appears in another cell, so that on the average the same number 
of cells display oscillation at  a given R, Pr. At sufficiently high R, depending 
upon Prandtl number, almost all cells display oscillations at any instant. How- 
ever, the phase becomes undistinguishable after a few oscillations. Transition 
to disorder appears to result from an increase in the number and frequency of 
these oscillations. The behaviour at  other horizontal positions was statistically 
similar. For all the liquids studied with 6.7 6 Pr < 8500, (2, t )  photographs were 
obtained which displayed both the slow tilting and the faster oscillation. 

(iii) We next describe some of the thermal properties of the time-dependent 
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flows. A typical trace of the temperature difference between two thermocouples 
in the fluid is shown in figure 6. Figure 7 (plate 5) shows a synchronized (5, t )  
photogra,ph and the corresponding trace of the temperature difference between 
the middle and right-hand thermocouple. (Three of the five thermocouples are 
visible as three straight lines in the photographs.) An oscillation in the tempera- 
ture difference occurs as the knots pass by the thermocouples. Similar photo- 
graphs synchronized with the temperature traces show that a slow tilt of the 

FIGURE 8. The pcriod of oscillation plotted against Rayleigh number. The period has been 
lion-diniensionalizcd by IISC of' the thermal diffusion tirne d a / ~ .  
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cell wall is accompanied by a correspondingly slow change in temperature. The 
internal temperature traces showed oscillations with or without t,racers in the 
fluid. 

(iv) At some Rayleigh number greater than about R,,, the doubled frequeney 
of oscillations begins to appear. This is particularly noticeable in figure 4 ( e )  
(plate 3),  where both 8 and 16 or 17 oscillations are observable in two different 
cells on the same photograph. The extension of the above arguments would be 
that twice as many knots are now advected with the flow. Traces of temperature 
at one point in the fluid, relative to a steady bath temperature also begin to 
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FIGURE 9. The regime diagram. The circles represent steady flows, the circular dots 
represent time-dependent flows. The stars represent transition points. The open squares 
are Rossby’s observations of time-dependent flow, the squares with a dot in the centre 
are Willis & Deardorff’s observations for turbulent flow. The triangle is Silveston’s point 
of transition to time-dependent flow (sec text). 

No motion 

The various regimes of flow observed are summarized in figure 9. The transi- 
tion points, marked by stars, are for Rayleigh number increased from below. 
The complete diagram for R decreased from above has not been obtained, but 
some of these transitions can be seen in the heat flux curves. The details of the 
observations in each regime are as follows: 

(i) The line labelled I marks the linearly predicted critical Rayleigh number 
R, which is independent of Prandtl number. In  the symmetric problem the 
flow above 22, is predicted and observed to be two-dimensional. There is a discrete 
change of slope of the heat flux curve associated with this transition. 

(ii) The curve labelled I1 marks the transition from steady two-dimensional to 
steady three-dimensional flow. This transition was described in part 1, and is 
accompanied by a discrete change of slope also. 

(iii) Curve I11 is defined by the Rayleigh number R,,, a t  which a third change 
of slope occurs and above which the flow is time dependent. R,,, depends upon 
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display this double frequency above RIv. This phenomenon was observed by 
Rossby (1966) as well as by Willis & Deardorff (1967), and is seen in a plot of 
period ws. Rayleigh number in figure 8. Although this requires further explora- 
tion, it  appears that the occurrence of the double frequency is associated with the 
heat flux transition at RIv. 

Variation of the aspect ratio from 0.02 to 0-04 produced no change in the 
transition point R,,,. However, both these values are small; the layer is shallow 
in both cases. 
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Prandtl number for Pr 6 50, then approaches a constant value of RIII = 55,000. 
Steady flows are indicated by circles, time-dependent flows by circular dots. This 
is in agreement with Silveston’s (1958) observation for Pr = 3 x lo3, shown by 
a triangle in figure 9, for which he described the flow as ‘constantly shifting’. 
This is also in agreement with Malkus’s (1 954b) observation for acetone, although 
he quotes two values with some spread. It is, however, not in agreement with 
Rossby’s data (1966)) shown by open squares in figure 9, although these latter 
may be interpreted as points at which the flow appeared turbulent. However, 
Rossby’s data so interpreted would then be in disagreement with Willis & 
Deardorff’s curve (shown by open squares with a dot and defining curve V) for 
occurrence of turbulent flows. Curve I11 is somewhat lower than Willis & 
Deardorff’s (1967) corresponding curve for Prandtl numbers 0-71 to 57. This 
is understandable from two considerations. With only one temperature probe 
to determine time dependence, one may have to wait many diffusion times before 
an oscillation occurred a t  the probe. However, in their experiments the Rayleigh 
number changed considerably in one diffusion time. Also, in view of this external 
unsteadiness, they discarded the slower time dependence with the thermal dif- 
fusion time scale. 

(iv) The curve labelled I V  has been studied less extensively. The change of  
slope a t  R,, has been observed for the fluids with Prandtl numbers 0.71, 6-7, 
and 1.0 x lo2. For Prandtl number 57 only the occurrence of the double frequency 
was noted. 

Discussion of the observations 
Much of this study has been to identify the various regimes of convective flow. 

Although all aspects of the time dependence have not been discussed, the study 
of the oscillatory behaviour may be summarized as follows. Regions of strong 
shear or ‘knots’ have been identified. The (s,t) photographs show that these 
knots are very nearly advected with the cellular convective flow. The internal 
temperature measurements synchronized with the (x, t )  photographs show that 
the knots correspond to temperature anomalies. These knots persist for a time 
of the order of the vertical thermal diffusion time. The description of the time- 
dependent flow as hot or cold spots advected around the cell by the mean flow 
fits very well with Welander’s model (Keller 1966; Welander 1967) of oscillatory 
convection. With a model of convection in a tubular loop they describe the 
conditions under which a relaxation oscillation can occur. The model consists of 
a tube of fluid closed into a loop in a vertical plane. The heat flux through the 
walls of the tube is specified as follows. Heat is supplied a t  a point along the 
bottom of the loop, and removed a t  a point along the top of the loop. The 
magnitude of the heat transferred depends upon the flow rate. No heat is allowed 
to flow across the walls on the vertical branches of the tube. Welander’s para- 
meter E is equivalent to a Prandtl number, and his flow rate 4 would be a function 
of Rayleigh and Prandtl numbers. A steady flow of fluid around the loop is of 
course a possible solution. Welander shows that this flow is unstable in a certain 
range of parameters to an oscillatory disturbance. The physical mechanism is 



On the transition to turbulent convection. Part 2 319 

understood as follows. A hot spot is imagined to form as a perturbation near the 
heat source. If the Prandtl number is sufficiently large (thermal diffusivity K 

is small), and the Rayleigh number sufficiently large (so that the orbit time of a 
particle around the cell is small) then such a hot spot may be carried around the 
cell before losing its identity. Welander shows that because the hot spot has 
extra buoyancy, it creates, for a certain range of parameters, a maximum flow 
rate while passing the upper part of the loop and a minimum flow rate while 
passing the lower part of the loop. Thus, the heat sink becomes less efficient, the 
heat source becomes more efficient than in the case of flow without the hot spot. 
The initial hot spot receives a boost each time it passes the heat source, and is 
thus maintained. Similarly, a cold spot receives a boost each time it passes by 
the heat sink. At a fixed point within the fluid then, the temperature will oscillate 
regularly with time with a frequency given by the orbit time or twice the orbit time 
depending upon the number of temperature anomalies. Welander shows that 
below a critical Prandtl number this oscillatory instability cannot occur, and 
that for large Prandtl number varies as ?j - (I%)+. 

At very much smaller Prandtl numbers, turbulence arises presumably through 
shear instabilities. At very large Prandtl numbers there is the mechanism de- 
scribed by Howard (1966) of thermal instability of the boundary layer. This is 
apparently not the mechanism occurring in experiments with 1 < Pr < 10 since, 
for these fluids, 3Rc < R,,, < 20Rc. Even if the two thermal boundary layers, 
each of thickness 6, occupied one half the layer so that S = @,the critical Rayleigh 
number for the boundary layer becomes 64 times that for the overall layer, which 
is difficult to reconcile with an instability at 3Rc. Howard’s theory is intended for 
higher Rayleigh and Prandtl numbers. However, even within the range of the 
experiments described in this paper, the mechanism of Howard‘s theory may 
complement that of Welander’s theory. 

It is not immediately obvious that the hot and cold spots on Welander’s model 
will increase the heat flux. It may be stated, however, that an increased heat 
flux is observed to coincide with the appearance of these anomalies. 

Welander’s model may be extended to allow many hot and cold spots cir- 
culating around the cell provided the orbit time is sufficiently small (Rayleigh 
number sufficiently large) that each is rejuvenated before they diffuse into one 
another. An instantaneous picture of the temperature field would then be one 
with higher modes in the vertical (Malkus 1 9 5 4 ~ ) .  However, it appears to be 
coincidental that for water and acetone the higher transitions correspond to 
instability points of higher vertical modes on the conduction profile since the 
observed transitions are in fact Prandtl number dependent. 

Summary  
Series of externally steady, fixed heat flux experiments were performed to 

measure Rayleigh number, heat flux and changes in flow for 

0.71 6 Pr < 0 . 8 5 ~  lo4 and lo3 < Ra < 106. 

The regime diagram summarizing these experiments is shown in figure 9. Each 
of the curves I, 11, I11 and IV marks a transition with a change of slope in the 
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heat flux curve. Above curve 111, the flow is time dependent with a slow tilting 
of the cell boundary and a faster oscillation which has the nature of hot or cold 
spots advected with the mean flow. Transition to disorder is seen to result from 
an increased number and frequency of such oscillations. 

The paper is also part of Geophysical Fluid Dynamics Institute, Florida State 
University, Contribution 25. This research was supported at UCLA under Grant 
GP-2414 of the National Science Foundation, at Stanford University under a 
grant from the Office of Saline Water, and at  the Florida State University under 
Office of Naval Research Contract N 00014-68-A-0159, where the largest part 
of the work was done. I am grateful to Professor W. V. R. Malkus, to Professor 
Andreas Acrivos, and to Professor Richard L. Pfeffer for this support. 
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Position (em) 
FIGURE 4. (x, t )  photographs of convective flow. The position x through the tank is along 
the abscissa; the total width of the photograph represents 48 em through the fluid. The 
time t is along the ordinate. (a) R = 45R,, Pr = 1.0 x lo2, 2 = 0.4d. The total time is 2.2 h. 
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FIGURE 4 ( b ,  c, d) .  ( b )  R = 28R,, Pr = 5 7 , Z  = 0.4d. The total time is 17 min. ( c )  R = 123R,, 
Pr = 57, Z = 0.4d. The total time is 6.4 min. ( d )  R = 123R,, Pr = 57, Z = 0. The total 
time is 6.4 min. 
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FIGURE 4(e,f ,g).  ( e )  R = 135R,, Pr = 57, 2 = -0.4cl. The total time is 15 min. (f) R = 
20OR,, Pr = 57, Z = - 0.4d. The total time is 17 min. (9)  R = 335R,, Pr = 57, Z = - 0.46. 
The total time is 15 min. 

KRISHNAMURTI 
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FIGURE 4(h) .  Portions of (x, t )  photographs showing the periodic nature of the flow i n  
one cell. R = 33R, in the picture on the left, R = 48R, on the right; Pr = 6.7.  The total 
time is 7 min. 

FIGURE 5. Time lapse photographs of a vertical section through 
scvcral cells. R = 67R,, Pr = 6.7. 
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FIGURE 7.  (2, t )  photograph synchronized with thermocouple signal. The photograph shows 
bright regions flowing past the thermocouples labellcd a and b. The trace shows the tem- 
perature difference between the thermocouples a and b for thc same time period. 
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